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Symmetry analysis of electronic states for crystals with 
spiral magnetic order: I. General properties 

L M Sandratskii 
Institute of Metal Physics, Ural Division of the USSR Academy of Sciences, Sverdlovsk 
620219. USSR 

Received 7 June 1990, in final form 5 April 1991 

Abstract. This paper is devoted to the systematic study of questions concerning the use of 
spin-space groups (SSG) in calculation and qualitative analysis of the electronic states for 
crystalswith spiral magneticorder. The typesofoperators that may enter into the symmetry 
group of a spiral are investigated. Introduction of the wavevector of an electronic slate on 
the basis of the generalized Bloch theorem is discussed, and it is shown that the possibility 
of the choice of the wavevector is not unique. The condition imposed on the symmetry 
operations belonging to the group of a given Bloch vector and the formula describing the 
symmetry of eigenvalues in reciprocal space are obtained and appear to be substantially 
different from counterparts wed in traditional cases of collinear and non-magnetic crystals. 
i t  is shown that. contrary to the traditional cases, there are spiral structures whose spectral 
symmetry is described by non-symmorphicspace groups. The irreducible domainofrecipro- 
cal space is found for a number of concrete spiral structures. Methods of construction of the 
SSG double-valued irreducible representations and alsoof their basis functionsare suggested. 
Special attention is devoted to the possibility of using the corresponding tables of ordinary 
space groups. In particular, it is shown that for spirals with hexagonal close-packed crystal 
structnre the traditional tables may be used after minor corrections. The peculiarities of 
allowance for the operation of time inversion are discussed. 

1. Introduction 

The success of electron band theory in describing theground-state properties of collinear 
magnets is well known. In recent years, methods have been suggested [l-71 that permit 
calculation of electron states for non-collinear magnetic configurations. Special interest 
attaches to calculations of the electron spectrum of spiral magnetic configurations. This 
is because, first, this arrangement of magnetic moments is observed experimentally for 
a lot of substances (see e.g. [SI) and, secondly, calculating the electron structure for 
these simplest non-collinear magnetic configurations allows one to draw important 
qualitative conclusions concerning the electronic propertiesof collinear magnets at finite 
temperatures [l, 9-11]. 

In [3], it has been shown that allowance for the generalized symmetry of the problem 
on the basis of the theory of spin-space groups enables one to simplify fundamentally the 
calculation of the electron spectrum of spiral magnetic configurations. The generalized 
symmetry permits each electronic state to be specified by a definite wavevector k that 
belongs to theBrillouin zone (BZ) ofthe chemical lattice. Themain featuredistinguishing 
spin-spacegroups (SSG) fromordinary space groups (SG) is the possibility of independent 
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transformations of spin and space sublattices. (According to terminology adopted by 
specialists in the theory of space groups, the SSG are a particular case of so-called 'colour' 
groups.) These transformations were introduced for the first time by Herring [12,13]. 
A systematic study of the SSG has been made by Naish [14], in connection with the 
problemofdescribingthesymmetryofmagneticstructures, and by Brinkman and Elliott 
[IS]. who used SSG primarily to describe the Heisenberg spin Hamiltonian [16]. The 
present paper is devoted to a systematic investrgation of questions connected with the 
use of SSG in the calculation and symmetry analysis of the electronic structure of spiral 
magnetic configurations. 

The next section discusses the Hamiltonian of the problem and the principles of the 
construction of the ssc describing the symmetry of the Hamiltonian. In section 3, the 
generalized Bloch theorem is considered; it is shown that there is more than one way to 
choose the wavevector characterizing a given electron state. In section 4, classes of 
operators that may enter into thesymmetrygroupsof spiralsare investigated. Insection 
5, theconditionimposedon thesscoperatorsinvolvedinthegroupofagivenwavevector 
isderived. The symmetry of the spectrum in reciprocal space is studied. I t  is shown that 
both the condition imposed on the operators belonging to the group of the wavevector 
and the formula describing the symmetry of the spectrum differ greatly from the cor- 
responding traditional results for collinear magnets, which may be described on the basis 
Of sc. It is pointed out that, contrary to the traditional problems, the spectral symmetry 
for some spiral structures is described by a non-symmorphic space group. Section 6 is 
closely connected with section 5 and includes a discussion of the irreducible domains of 
reciprocal space where the spectrum is to be calculated. Sections 7 and 8 are devoted to 
the construction of irreducible representations (IR) and symmetrized functions. Special 
attention is paid to the possibility of using the corresponding tables for point groups. In 
section 9, peculiarities in taking into account the time inversion operation are discussed 
for the case of spiral structures. 

2. One-electron Hamiltonian and its symmetry 

In the present paper, we shall restrict ourselves to a consideration of spiral structures of 
the form 

e,", = sin e exp[iq. (a, + t.)] 

e,", = COS 0 

(?..la) 

(2.16) 

where the vectors e define the directions of atomic magnelrtic moments, the t. are the 
lattice translations, the ai are the radius vectors of unit-cell atoms, and q is the vector of 
the spiral. W e  shall suppose that a,  = 0. Formulae (2.1) give the projections of vector e 
on thexy plane and the z axis; 0 is the angle between the magnetic moments and the z 
axis. In (2.la) the representation of the vector in the form of a complex number is used. 

The one-electron Hamiltonian of a non-collinear structure (2.1) may be written as 
[31 
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is a potential in the local atomic systems of coordinates, the z axes of which are parallel 
to the directions of atomic moments. The spin rotation matrices 

1 (2.4) 
cos(4P) exp[-i(n + y)/2] 

sin(f8) exp[i(a - y)/2] 

-sin(@) exp[-i(a - y)/2]  

cos(4P) exp[i(a + y)/2] 
"= ( 

determine the transition between the laboratory coordinate system and the atomic 
systems; a, 8, yare Euler angles; A is the kinetic energy operator. 

In [15], it has been shown that the traditional machinery of space groups does not 
give a complete description of the symmetry of Hamiltonian (2.2), so the use of SSG is 
needed. The action of a SSG operator on a two-component spinor may be defined by 

(2.5) 

where asis the spin rotation, {aRlt} is aspace transformation that contains arotation aR 
and a translation t .  From the commutation relations of the operators (2.5) and the 
Hamiltonian (2.21, it follows [17J that the symmetry group of the problem includes 
operators that leave the magnetic structure (2.1) invariant. The action of SSG operator 
on the vector function (2.1), determined at the crystal lattice sites, is defined by 

{ns/aR1t}Y(r) = U(as)Y({aRlt}-'r) = U(as )Y(a iLr  - m i l t )  

e;. = {es I aR It}ein = aser,,, (2.6) 

where the indicesj', n' may be found from the equality 

{ E R  It}-L(ai + I , )  = a,, + t... (2.7) 

At the same time there is an important difference between the group of operators 
(2.5) commuting with the Hamiltonian (2.2) and the group of transformations (2.6) 
leaving the magnetic structure (2.1) invariant: two operators (2.5) of opposite sign 
correspond to each transformation (2.6). This sign uncertainty is typical of operators 
acting on spinors and is a consequence of the homomorphism of the group of rotations 
asand thegroupof matrices U(@,) [ls]. (Usingthe same notation for the transformations 
defined by (2.5) and (2.6) should not lead to difficulties. In this paper, we use mainly the 
operators (2.5).) 

The multiplication law for the operators (2.5) reads 

{as[ (YR IfXaiIakIt'} = c,{asch laRWk I a(Rt' f t} (2.8) 
where c, is + 1 or - 1, according to the signs that we choose for matrices Uin the definition 
(2.5) of the operators involved in (2.8). In the general case, this uncertainty cannot be 
removed by any choice of the signs of operators. The group multiplication law may be 
fulfilled only for double groups [19] containing two operators with opposite signs for 
each transformation (2.6). 

The wavefunctions corresponding to an energy level form the basis of some IR of the 
Hamiltonian symmetry group [NI. In the case of spinor wavefunctions, this statement 
holds good for the IR of double groups or, in other terminology, for the double-valued 
representations of the group of the transformations (2.6). 

Thus in constructing the symmetry group of the Hamiltonian (2.2), it is sufficient to 
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find the symmetry group for the vector function (2.1) on the basis of transformations 
(2.6). But to describe the electronic structure, we need to take into account the sign 
uncertainty of the operators (2.5). 

Note that the potentials V,(r) in (2.3) may be defined in both the atomicsphere and 
the whole space. Therefore the consideration is not restricted to the muffin-tin potential 
only. We believe that the important conclusion drawn in the previous paragraph and, 
as a consequence, all further considerations should be valid within any consistent theory 
of electron states of non-collinear magnets neglecting spin-orbit interaction (see also 
[16]) and do not depend on the representation of one-electron potential. 

3. Generalized Bloch theorem 

As in traditional cases whose symmetry may be described by ordinary SG, the most 
important role is played by the translational symmetry of the problem, because this 
symmctry permits a wavevector of a state to be introduced [3, 13, U]. 

Let us consider SSG elements of the form 

T" = { 4 q . ~ , ) I 4 f n 1  (3.1) 

where E is the unit element of the group of rotations. and cr((p) is a rotation by an angle 
rp about the z axis. We call these elements 'generalized translations'. For the group of 
generalized translations, T. the use ofthe double-valued representations may be avoided 
if, in thedefinition (2.5) ofoperators(3.1), weusematrices(2.4) corresponding toangles 
a = p = 0, y = q . t.. For these matrices we introduce the notation U(q . fn). For this 
choice of the signs of the matrices we can write 

U(q.t,,)"tm) = U(q.(t , ,  +Im))  (3.2) 

and the set of generalized translations forms an Abelian group that is isomorphic to the 
group of space translations t,, Therefore the IR of these groups are identical and we can 
write the LR of Tin thc form 

D k ( T n )  = exp(-ik.t.). (3.3) 

T.Y(r)  = exp(-ik.t,)Y(r) (3.4) 

Thus we arrive at the generalized Bloch theorem 

where Y is the eigenfunction of the Hamiltonian (2.2). 
Hence in labelling the states, it is sufficient to use wavevectors from the BZ that 

correspondstothelatticeofvectorst,.Theelectronspectrum&(k)mayalso beconsidered 
as defined at all points of reciprocal space and as having the periodicity of the reciprocal 
lattice. 

Note that. although we may avoid the use of double-valued representations of the 
generalized translation group, the sign uncertainty in the definition of operators (2.5) 
leads to the following important property: the possibility to connect the electronic state 
with the vector k of the BZ on the basis of the generalized Bloch theorem (3.4) is not 
unique. 

Indeed, let us show that there are other possibilities to choose the signs of the 
operators Tn, which also lead to the isomorphism of the group Tand the group of space 
translations t,,. 
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Rewrite formula (3.3) in the form 

Dk(T, , )  = 2 [exp(-ik . f i ) ] " 4  

;=I 

where we have used the equality 
3 

t ,  = 25 nif ;  
i= I 

(3.5) 

(3.6) 

and theJ; are the unit translations. The sign uncertainty in the formula (2.5) allows one 
to change the definitions of the generalized translations corresponding to the vectorsf, 
in such a way that the value of the representation corresponding to the translation t, 
takes the form 

(3.7) 

where ci may be equal to + 1 or - 1 depending on the choice of sign in the definition of 
unit translations. Expression (3.7) may be rewritten in the form exp(-ik' .tL); that is 
we obtain, as before, the traditional form of representation (3.3) but for a different 
vector 

(3.8) k' = k + 2 u;b, 

where the b, are the unit translations of the reciprocal lattice, U, is equal to 0 if c, = 1 and 
to 112 if cr = - 1. Therefore depending on choice of signs in the definition of operators 
T,, the same electronic state will satisfy the Bloch condition (3.4) for different values of 
wavevector, which differ by half the reciprocal-lattice vector. 

The change of sign of the operators that leads to equality (3.8) may be defined, in 
calculating the spin rotation angle in (3.1), by the replacement of spiral vectorq by 

q' = q + 2 u;bi.  
i 

(3.9) 

In this case, the spin rotation accompanying lattice translation changes by a value that 
ismultiple o f h .  The translation thusobtainedisagain asymmetryoperation that leaves 
the magnetic structure (2.1) unchanged but leads to some operators T. changing sign 
due to the properties of the matrix U. 

In the following consideration it is supposed that the choice of the spiral vector 4 has 
been made and, therefore, the wavevector of each state is uniquely fixed 

4. Properties of the symmetry operations of spiral structures 

The symmetry of the Hamiltonian (2.2) relative to the elements of the group of gen- 
eralized translations has allowed us to characterize each electron state by a wavevector. 
For the investigation of the properties of the electron spectrum, which follow from the 
presence of other symmetry operations, it is useful to find classesof operators that may 
enter the symmetry group of spiral structures. 

In this section we restrict our attention to strictly non-collinear structures (although 
a ferromagnet and an antiferromagnet may be considered as the limiting case of a 
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spiral). Then, in the SSG of a spiral, the only spin rotation a;j corresponds to each 
space transformation {aRlt} because in the opposite case the group has to contain a 
transformation that is a purely spin rotation. 

Let 6 = {cuS I f f R  It} be a transformation from the SSG of the spiral. For the space part 
of this transformation, the following relation is true: 

{ E R  l f } - l { & l t , t x @ R  I t }  = { & I C Y R l t n } .  (4.1) 

Then, for the operations (2.6) we can write 

g-'T(t , )g  = T(CYi'fn) (4.2) 

where the space translations corresponding to the generalized translations are shown in 
brackets. For the spin parts of the operations we shall obtain 

CY~'CY(t,)CY, = CY(CYilt.). (4.3) 

Supposing that the spin rotation 
(?A), we can write 

is defined by the angles CY, p, y and using formula 

d* sin*($) + dcos2(tp) ) = c s t  ;) (4.4) 
d* cos2(i+3) + d sin2(#) 

i sin f i  e-'v(d - d*) 

1 sin p e'Y(d - d") 

which follows from (4.3). In (4.4) d = exp($iq. t , ) , f =  exp[$iq. (ai't.)], the constant 
c, arises from the homomorphism of the rotation group and the group of the matrices U 
and is equal to + 1 or -1. 

If the vector q coincides with a vector of the lattice reciprocal to the lattice of vectors 
f,,, that is, 

q .  t ,  = 2nk k is an integer (4.5) 

then equality (4.4) is true for any as. 
For other q the condition (4.4) is fulfilled if 

p = 0  (4.6a) 

aRq= 4 + K e  (4.66) 

(4.7a) 

(4.7b) 

where K ,  is a reciprocal-lattice vector. In the case (4.6), the spin rotation is carried out 
about the z axis; in the case (4.7). the rotation is carried out by an angle n about an axis 
perpendicular to the z axis. We shall call the operations fulfilling the conditions (4.6) 
and (4.7) operations of type I and 11. respectively. 

As the operations of type I1 change the sign of the projection of the magnetic 
moments on the z axis, they can enter into the symmetry group only for spiral structures 
(2.1) with 0 = 4 2 .  when all spins are parallel to the z = 0 plane. 

Tosolve thequestion whetherconditions(4.6) and(4.7)sufficeforthecorresponding 
transformations to be involved in the SSG of the spiral, we transform the crystal by the 
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symmetry operations of the space subsystem {aR It} without changing the directions of 
atomic spins. Then, instead of ejnl in (2.1), we shall obtain 

e,!", = sin e exp[iaRq. (U, + t n )  - iq. (ai ' t) ] .  

e;", = sin 0 exp[iq. (aj  + t.) + iK, ' U ,  - iq. (silt)]. 

(4.8) 

For operations of type I ,  using (4.6b), we can write 

(4.9) 

The function (4.9) will coincide with (2.10) as a result of a spin rotation about the z axis 
if and only if the expression - K ,  .ai + q .  (ai 't) gives a j-independent value of the 
angle of rotation. As al = 0, we can write this condition in the form 

K ,  . U, = 2nk k is an integer (4.10) 

for any j .  Therefore, K ,  has to fulfil the condition imposed on the reciprocal-lattice 
vectors not only for lattice translations tn, but also for atomic basis U,. 

e,;: = sin e exp[-iq' (U, + t.) + iK, .ai - iq. (ai ' t) ]  

For operations of type 11, using (4.76) yields 

(4.11) 

instead of (4.9). 
Taking into account that a rotation by an anglezabout any axis perpendicular to the 

z axis may be considered as a rotation by an angle n about the x axis followed by a 
rotation through an angle about the z axis, and allowing for the fact that a rotation by 
an angle n about thex axis corresponds to a complex conjugation of the function (4.11), 
we again obtain the equality (4.10) as a necessary and sufficient condition for the 
operations of type I1 to enter the symmetry group of the spiral. 

Note that for lattices with one atom per unit cell and also for q and aR for which 
K ,  = 0, the condition (4.10) is always fulfilled. 

5. Groups of the wavevectors and the symmetry of the spectrum in reciprocal space 

With respect to the electron state Y k  corresponding to a given k,  all symmetry operators 
g may be separated into two sets. The first set contains operators that transform the 
function Y k  to a function gYk corresponding to the same vector k .  These operators form 
the wavevector group, Gk, whose irreducible representations determine the character 
of the degeneracy of states at the point k .  The second set contains operators for which 
the functiong", fulfils the condition (3.4) for a vector k' that is not equal to k. This part 
of the operators determines the symmetry of the spectrum in reciprocal space. We shall 
show that both the condition imposed on the operators belonging to the wavevector 
group and the formula describingthe symmetry of the spectrum differ substantially from 
the corresponding traditional results for collinear magnets, the symmetry of which may 
be described on the basis of ordinary space groups. 

Let the generalized translation T(tJ act on the functiongYk: 

Tnk'Y,) =g{as '&.  t n b s  I E l ~ i l t , } Y k .  (5.1) 

For operations of type I ,  rotations as are performed about the z axis. Therefore these 
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operations commute with cu(q. tn), and we can rewrite the operator on the right-hand 
side of (5.1): 

Ia(q . t . ) I E l a i ~ t n }  = {a(q .I, - 4. ( c u ~ ~ t " ) ) l € I O } ~ ( ~ ~ ' f " ) .  

q ' t ,  - q '  (ai't") = - K ,  . t ,  

(5.2) 

(5.3) 

As 

this value of the angle of spin rotation is a multiple of 2n and the corresponding matrix 
U(-K,  . t , , )  is a scalar and equal to +1 or -1. Allowing for (5.2), (5.3) and (3.4), we 
have from (5.1) 

TnbYk)  =exp[-i(cuRk - 4&).rn](gYk). (5.4) 

cuRk -Nm = k + K ,  (5.5) 

Thus the function gYX corresponds to the wavevector ruRk - Ne. If 

where fip is a reciprocal-lattice vector, then the type I operation g is involved in the 
group of the wavevector k. In the opposite case we obtain the symmetry property of the 
spectrum 

E(k) = E(cuRk - B,). (5.6) 
For operations of type 11 the product of three spin rotations may be written in the 

form 

ai'cu(q.t,)c~, = n(-q . t , )  = cu(-K, .t,,)a(q. (ai l to))  (5.7) 
where formula (4.7b) was used. Further, in complete analogy with the consideration for 
operatorsof type 1. we obtain the result that formulae (5.4)-(5.6) are true in thecase of 
operators of type 11, too. 

So we see that formulae (5.5) and (5.6) differ from the corresponding formulae in 
the traditional case: 

nRk  = k + K ,  (5.8) 

c(aRk) = e(k) (5.9) 
and coincide with them only for& = 0. 

To understand more deeply the sense of the relation (5.6), we replace the variable 

k = k ' +  1q (5.10) 

and introduce the notation c'(k') = E(k' + $4). Formula (5.6) takes the form 

E'(k') = E'(nRk')  (5.11) 

that is we have obtained the traditional formula (5.9). Hence the type I operations 
determine the symmetry of the spectrum relative to a point transformation with the 
centre at the point Iq. For operations of type I1 the use of (5.10) allows us to represent 
(5.6) in the form 

E(I((I@R)k' + $9)) = E(k' + &q) (5.12) 

where I is the operation of inversion. Therefore, an operation of type I1 leads to the 
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coincidence of the spectrum at a point k with the spectrum at the point obtained from k 
by a transformation IaR relative to the point 4q and by a subsequent inversion relative 
to the coordinate origin. 

If the group contains operations that are a superposition of point transformations 
with different centres, an unusual result can arise: the symmetry of the spectrum in 
reciprocal space will be described by a non-symmorphic space group, a situation that is 
impossible in the traditional case (5.9). (A corresponding example will be considered 
below.) 

The spiral structure spectrum symmetry can be visualized better if we rewrite equal- 
ities (5.6), (4.6) and (4.7) in the form 

(5.13) 

From this it follows that the symmetry group of the spiral spectrum includes only 
operations that leave unchanged the crystal lattice made up of the vectorsKp and having 
two atoms (at the points 4q and -44) per unit cell. Moreover, operations of the first type 
(5.14) leave the atoms of the basis unchanged, and operations of the second type (5.15) 
transfer one atom of the basis into the other atom. 

Finally, in the case (4.5) where the spiral vector is equal to a reciprocal-lattice vector, 
a consideration analogous to the foregoing treatment shows again that formula (5.6) is 
true for any symmetry operation. 

6. Irreducible domain of reciprocal space 

One of the main tasks of the investigation of spectral symmetry is to determine a 
minimum domain of reciprocal space such that knowledge of the spectrum in this domain 
allows one to find the spectrum at any point of space. The volume of the irreducible 
domain (ID) is equal to the (I/n)th part of the BZ volume, where n is the number of 
different point transformations aR entering into the symmetry operations. 

Let us consider the ID for a number of concrete spiral structures. 

6.1. scclattice, q = (0, 0, a), 0 < (Y S 2n/a  

For magnetic structures (2.1) with a # 2n/a and 0 # n/2 the symmetry group contains 
eight of 48 operations of the crystal class of cubic lattices [20]. These are operations that 
satisfy the condition 

aRq = q (6.1) 

and are rotations about the z axis and reflections in the planes going through the z axis. 
For the same a and 0 = n/2 the volume of the ID decreases by the factor of 2 because of 
the type I1 operations, for which 

a R q  = -4.  (6.2) 

These operations may be obtained from the previous eight operations by multiplying by 
the inversion. For all of the 16 operations the vector K ,  in formulae (4.6) and (4.7) is 
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101 

Ibl 

Figure 1. Irreducible domains in reciprocal space 
for spiral structures with BCC lattice. ( a )  The tra- 
ditional ID of BCC lattice (thin line) and the ID for 
spiral structure with q = (0.0, ZT,'~) and 0 # 9V 
(heavy line). (b)  The ID for spiral Structure wilh 
q = (a,n,n)/a and 0 = 90' (heavy line). The 
tetrahedron of doubled volume is the ID lor spiral 
structure with q = (.x,n.x)/u and 8 # 90'. The 
coordinate scales are given in Zxjn units. 

Figure 2. (a) Magnetic structure with q = 
(n.r.a)/a and 0 = 90". ( b )  The crystal structure 
whose symmetry is described by the same sym- 
metry group as the symmetry of the spectrum of 
the magneticcrystal shown in (a).  

zero and the symmetry of the spectrum has the traditional form (5.9). Therefore, 
the construction of the ID has no peculiarities connected with the non-collinearity of 
magnetic structure. It suffices to separate the (l/n)th part of the traditional BZ of the 
lattice being considered, by allowing for the point transformations 0 1 ~ .  

In the case 01 = 27/a and 8 # i ~ / 2  the symmetry group of the spiral contains all the 
48 operations 0 1 ~  of the cubic lattice crystal class as the condition (4.66) is fulfilled for 
any 0 1 ~ .  In this case all operations belong to type 1, and formula (5.11) works well for 
any operation, Hence the spectrum is invariant under 48 point transformations with the 
centre at point 412. Therefore, the ID may be taken in the form of the polyhedron shown 
in figure I(Q) and obtained from the traditional ID of the BCC structure via displacement 
by the vector 412. 

Finally,for 01 = h / a a n d  8 = n/2weobtain a collinear antiferromagneticstructure, 
which has been well studied by the traditional methods. 
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6.2. BCChttiCe, q = (n, n, n ) / a  

For 8 # n / Z  the group contains 24 operations, for which the equality (4.66) is true. The 
corresponding ID (figure I(6)) is shifted by $q relative to the ID obtained for the same set 
of CY, in the traditional case. For 8 = ?c/2 the volume of the ID is equal to 1148th the BZ 
volume (figure l(b)), although the location and orientation of the ID differ from the 
traditional case (figure l ( a ) ) .  

The magnetic structure with 8 = ?c/2 (figure 2(a)) is of special interest because at 
this parameter the symmetry of the spectrum is described by a non-symmorphic space 
group. Figure 2(6) shows a crystal structure whose symmetry is described by the same 
space group as the spectrum of the spiral. As was noted in the previous section, that is 
a crystal with an FCC lattice and two a t o m  per unit cell at the points 4q and -$q. 
In particular, the symmetry group of the structure shown in figure 2(6) contains a 
transformation that consistsofa reflection in thez = Oplaneand asubsequent translation 
by the vector (n, n, O)/a parallel to that plane. This indicates the presence of a slip plane 
in the symmetry group of the spectrum. 

6.3. HCPStrUCtUre, q = (0, 0, E), 0 < (Y s 2n/c 
For (Y # h / c  and 8 # n/2 the spiral structure symmetry group contains, of the 23 
operationsof the ~~~structurecrystaIclass[20], 12operations that fulfilcondition (6.1). 
For 0 = n/2 the volume of the ID becomes equal to 1124th the szvolume, owing to the 
operations satisfying (6.2). In the latter case the ID coincides with that used in traditional 
calculations for HCP crystals [20]. 

For (Y = h / c  and 8 # n/2 equalities (4.66) and (4.10) are fulfilled for all the 24 
operations (Y, and we obtain again the traditional polyhedron of the HCP crystal. 

7. Irreducible representations of the wavevector group 

A principal role in the consideration of the symmetry of quantum-mechanical problems 
is played by the irreducible representations (IR) of the symmetry group of the Hamil- 
tonian. In the investigation of crystals, the task reduces to finding permissible IR of the 
wavevector groups [21] for various points of reciprocal space. 

Comparing the multiplication law for the SSG operators (2.8) with the corresponding 
formula for the space parts of the operators 

and taking into consideration the one-to-one correspondence of the spin and space parts 
of the SSG operators for non-collinear structures, we may conclude that double-valued 
IR of the ordinary space group of the operators {aR][},  but with sign distribution defined 
by spin rotations, are needed in this case. On constructing the multiplication table, the 
I R  can be found by the traditional group-theory methods; that is, in principle, the 
problem has been solved. 

In this section we shall formulate a simple statement that allows us to base the 
construction of the SSG IR on the existing tables of IR of ordinary space groups. As an 
example we shall consider the application of the method to a crystal with HCP structure 
(sG of the D& type). 
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Table 1. Elements of the crystal class', 

l 4  0 c,, I1 15 r c, I n.n.1 
0.0,-1 ' 60 3 

Transformations aR With numbers from 13 to 24 differ from the corresponding operations 
with numbers from 1 to 12 in the addition of inversion. The following nolations are used: 
r = a*: C, is the rolation by an angle rp = q .  rabout the i axis: C,. is the rotation by an angle 
r about e,; C, = C,C,.. The symmetry group of the FS contains the operations of type I 
only. 

It may be shown that for the subgroup containing symmetry transformations 
{as/aRlf} belonging to type 1 and fulfilling condition (6.1) the signs of the operators 
acting 011 the spinors may be chosen such that the isomorphism of this subgroup and of 
the corresponding subgroup of pure space transformations{~'~/i] takes place. The proof 
of thisstatement is basedon the property following from the results of section4 that for 
operators aRIt}, which satisfy (6.1), spin rotations are carried out by an angle q .  t 
about the L axis. The isomorphism will be established i f  we fix the sign of the matrix (2.4) 
in definition (2.5) by using the angles y = q .  I, f i  = (Y = 0. This isomorphism allows one 
touse ther~oftheordinarys~oftheoperators{a~~f}asthelRofthesscoftheoperators 

Let us consider the construction of the IR of the SSG of a spiral with an HCP Structure. 
In accord with experiment [ 8 ] ,  we take a vectorqparallel to the z axis. We shall restrict 
our consideration to vectors q that are not equal to a reciprocal-lattice vector. We shall 
use the form of the unit cell of the HCP structure defined by unit translations 

{ a ( q . t ) l a R l 4 .  

f, = U ( l i . 2 ,  V3/2,0) f2 = a(-1 /2 ,  V q 2 ,  0) f3 = c(O,O,l) 

and by atomic basis 

a ,  = (0,O.O) u2 = (0, ~ 3 a / 3 ,  C / Z )  

where a and c are the lattice parameters of the HCP structure. In table 1 the elements of 
the crystal class of the SSG are given for a ferromagnetic spiral (FS) with B in (2.1) 
not equal to n/2, and for a simple spiral (ss) with 0 = n/2. These structures were 
experimentally observed for Tb, Dy, Ho and Er [SI. The symmetry elements entering 
into the group of the wavevector for various BZ points are given in table 2. 
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Table 2. Symmetry of the reciprocal space pointsa. 

8.577 

k Symmetry elements 

Symbol k, ky k, Type1 Type I I  

A 0 0 P 
r 0 0 0 
A 0 0 1 
U 0 f i l 3  U 
M o f i j 3  b 
L 0 f i f 3  1 
P 113 *I3 U 

K i /3  f i j 3  b 

E mi3 f i i 3 V  1 

n 113 f i f 3  1 
Ly 013 f i f 3 v  0 

R 
E "13 f i f 3  P 
T' vf3 f i f 3  0 
S'  v/3 ~ f 3  1 

l 4 ,1%24 - 
1-6.19-24 7-18 
1-6;19-24 7-18 
1.6.19.23 - 
1,6,19,23 7,11,13,18 
1,6,19,23 7.11.13,18 
1,4,5,22-24 - 
1.4,5.'2-24 7-9.14,15,18 
1,4,5.22-24 7-9.14.15.18 
1 18 
1 18 
1.24 - 
1.24 8. 18 
1.24 8. 18 
1.19 - 
1.19 11.18 
1.19 11, 18 
1.23 - 
t.23 7,18 
1,23 7.18 

" Thesymmetrygroupofthencontains theoperationsoftypelonly. Coordinatesk,, k,are 
given in Zz/a units, k, in 2z/c units. 0 C Y ,  w < 1. - 1  < P  S 1 in the case of the FS and 
0 < P  C 1 in the case ofss. 

In the case of an FS all points of any straight line parallel to the z axis have the same 
symmetry. That is why the isolated points of high symmetry are absent for the FS. In the 
ID there are only three vertical directions A ,  P, U and three vertical planes y,  6 ,  E the 
groups of which contain non-unit elements of the crystal class. As the symmetry group 
of the FS contains only type I operations that satisfy (6.1), the i ~ o f  all the wavevector 
groups may be found from the isomorphism with the corresponding space group. More- 
over, for all the six symmetry objects the wavevector groups contain the same elements 
LU, as those in the traditional consideration of these points on the basis Of SG D& [ZOI. 
Therefore we can immediately use tables of IR of ordinary SG for these symmetry 
directions and planes. In  table 3 the IR for the direction A are given. 

In the case of ss for points of the planes z = 0 and z = nlc, the number of symmetry 
elements is doubled owing to  the operations of type 11, which satisfy condition (6.2). 
For the points k of these planes the theory of the SG IR (see e.g. [21]) permits one to 
find the IR of the SSG of the wavevector k for the ss, based on the corresponding 
representations at this point for the FS. For the points of these planes the wavevector 
group in the case of an FS, H ,  is a half-subgroup of the group of the same wavevector in 
the case of an ss, G. Then 

G = Hg,  -k Hg,  

whereg, is the unit element and the element numbered 18 in table 1 may be used asg,. 
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H is an invariant subgroup [21] of G. We can write the following formula for the 
charactersx,(h) of representations dp(h) of H ,  h E H ,  

X p k 2 h g r ' )  =x,.(h). (7.3) 

Further steps depend on whether p is equal top' or not. 

by the direct product 
Withp = p' ,  Gisthelittlegroup[Zl]ofthe representationd,andits~~maybefound 

D p < ( h g m )  = ( d p ( h ) U k m ) )  x 6ckm) (7.4) 

d p ( g m h g i ' )  = U(gm)dp(h)Ukm)-' (7.5) 

where the unitary matrices Uare defined by the formula 

and 6; are the projection representations [21] of the factor group G/H defined by 
formulae 

6 ( g m ) 6 ( g m ' )  = W m m ' 6 k m g m . )  (7.6) 

U ( ~ m g m , )  = w"U(g?")U(€!m,).  (7.7) 

In the case ofp # p ' ,  two representations (dp and d,,) form an orbit and give one IR 
of group G: 

and forg E G, but g E H ,  

(7 .8~)  

(7.8b) 

Thus the main question is whetherp' in (7.4) will be equal top or not. In the case of 
HCP structure we can write 

x p ( g h ; ' )  = exp[-ir- ( a d  - k)lxp(h) (7.9) 

where ala is the space rotation of the 18th operation from table 1. For all points of the 
z = 0 plane a,& - k = 0 and. consequently, p' is always equal top .  For the points of 
the z = n / c  plane the equalityp = p' holds either for operations with rrr = 0 (see table 
1) or for the case xp(h) = 0. Let us consider some details of the construction of the IR for 
the z = 0 and z = n / c  planes. 

The z = Opfane. For all points of the plane 

1 0  
Uk') = U k 2 )  = (o 1) col1 = W I Z  = wyi = 1 = -1. 

In this case the isomorphism with an ordinary space group cannot be established, 
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because g: = -g, for any choice of sign of g,. Two projection representations of the 
factor group have the form 

6&?11= 1 V,&) = 51 where = 21. (7.10) 

These permit us to write the representations (7.4) at any point of the z = 0 plane. In 
particular, to obtain the IR at the point r, it suffices to use the relation 

rPcmm) = d , ( h ) w , )  (7.11) 

where the d,, are the IR from table 3, which correspond to the point k = 0. 
Note that for the space group Dth a quite analogous consideration may be carried 

out to construct the IR at the points of the z = 0 plane. The only difference lies in the 
replacement of the imaginary unity in (7.10) by unity. Thus all IR Dp5 of the ssG of the 
spiral for the points of the z = 0 plane may be obtained from the representations D;< of 
the ordinary space group by multiplying the matrices of symmetry elements numbered 
7 through to 18 by an imaginary unity; that is 

(7.12~) 

(7.12b) 

Point A .  All representations of the subgroup H belongto the case where equality (7.3) 
isvalidforp # p’ .  The representationsofthe subgroup(table3) areseparated into three 
orbits: ( p  = 1, p’ = 2); ( p  = 3, p’ = 4); ( p  = 5, p’ = 6) .  Using (7.8) we obtain three 
irreducible representations of the wavevector group at the point A. 

The length of the present paper does not allow us to consider all points of reciprocal 
space in detail and to furnish tables of IR.  A complete consideration of the problem 
enables us to draw the following conclusions about the connection between the SSG IR in 
the case of the ss and the group Dih IR.  (i) For all points of reciprocal space, the number 
and dimensions of the 18 of the ss coincide with the counterparts for space group D&. 
(ii) For points that do not belong to the z = 0 and z = n/c planes, the IR coincide 
completely. (iii) At the points of the z = 0 and z = n / c  planes SSG 1R of the type (7.4) 
(for the z = 0 plane all IR belong to this type) differ from the corresponding group D2h 
IR by multiplierifor matricesoftypeIIelements. (iv) Forl~oftype(7.8). thisdifference 
resides in the change of sign of the lower left-hand block of the matrices of type I1 
elements. (v) For the SG Dth the f ~ o f t h e  wavevector lying in the z = n/cplane belongs 
to the type (7.4) if its restriction on the subgroup of elements fulfilling condition (6.1) is 
irreducible. In theoppositecase t h i s l ~  belongs tothe type(7,8).ThisinformationaIlows 
one to construct easily the IR for a Ss on the basis of tables of SG Dih IR. 

8. The construction of symmetrized functions 

Complete allowance for the symmetry of the problem in band-structure calculations is 
based on representing the electron wavefunction as a linear combination of functions 
forming the basis of the IR of the Hamiltonian symmetry group. Detailed symmetry 
analysis of electronic states may be useful, for instance, in the description of spectral 
properties connected with the electron transitions between different states because 
the symmetry of states influences substantially the probability of transition, Another 
application of this analysis is the prediction of the character of the change in electron 
bands as a response to  the change of the one-electron potential symmetry. (As an 
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example, see the following paper for a discussion of the influence of magnetic structure 
change on optical properties of crystals.) 

We shall restrict ourselves to the construction of symmetrized bases of the functions 

y ~ u = f ( l r - a i - f . I ) Y l m ( r - a ,  -t.)x?. (8.1) 
These will allow one to carry out symmetry considerations for the Korringa-Koho- 
Rostoker (KKR) [ 3 ] ,  tight-binding [ 3 ] ,  augmented spherical-wave (ASW) [6] and linear 
muffin-tin orbitals (LMTO) [7] methods. In (8.1), f is an arbitrary function, Ylm are 
spherical harmonics and x$ is a spinor, which in the local coordinate systems takes the 
form 

x -  = (9 
It is convenient to choose directions of the x and y axes of the local coordinate systems 
such that the following equality holds: 

U,= = U ( q .  (G + a , ) P w  (8.3) 
Any element of the wavevector group Gx can be represented as Tn& where & is an 

operator {cuslcuRIr,} for which the vector T, lies inside the unit cell. To obtain the 
symmetrized functions, we act on the functions (8.1) by a projection operator 

OPgy = [ ~ , / n ( T ) n k d l c  t.)DPgJci.)*(T,ci.) (8.4) 
E.* 

where the value of y is fixed; /3 = 1,2, . . ., 1,; 1, is the dimension of the representation 
D,; n(T) and n(gk) are the numbers of elements T, and iU in Gk. 

On performing transformations we have 

a%,,* = [ I / ~ W I  E d,*,- exp(-ik.t,)DPg,(rE.)*D~.,,(cuR) exp(-hv,o). (8.6) 
d 

Here @(aR) are the matrices of the representation of the space rotation group. Lattice 
vectors t*, are defined by equality 

{ a R  b e } a ,  = a)e + IO,. (8.7) 

The important difference between (8.5), (8.6) and the corresponding formulae for the 
ordinary space groups is the presence of the factor exp(-lq,o) in (8.6). The value of 
qo, is defined by equality 

(The product of four matriceson the left side of (8.8) always corresponds to a spin rotation 
about thezaxis.)Thecoefficients (8.6) enterinto theformulafor the symmetrizedsecular 
matrix [ 3 ] .  The action of the projection operator on the function (8.1) with n # 0 gives 
symmetrizedfunctions that differ from (8.5) and (8.6) only in an unimportant multiplier. 
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Table 4. Indices of the representation the basis of which may be constructed from the 
functions with I = 2.. 

SSG of ss 
Type of 
point o =  I a =  - 1  DIDh 

In  parentheses. the value of n% is given if it differs from 1 

The analysis of formula (8.8) with the use of (4.66). (4.76). (8.7) and (4.10) shows 
that 

qq = - K , ( n R a , )  (8.9) 
for operations of type I and 

Pq = -K*(nRQ,) + n (8.10) 

for opcrations of type 11. 
Formula (8.5) shows that symmetrized functions may be constructed from ‘atomic- 

like’functions(8.1) with fixedland a. I t  isuseful toobtain aformulagivingthenumber, 
nfo, of different pth representation basis sets that may be constructed from functions 
with given I and a. Acting by the group Gx operators on functions 

2 exp(ik. t . ) ~ g  

with fixed land oshows that these functionsform the basisof a group Gkrepresentation 
that is, generally speaking, reducible. The character of this representation has the form 

x 2 exp(-iarp,/2) exp(-ik-t,)d,,* (8.11) , 
where n, = 0 if nu, is a proper rotation, and n, = 1 in the opposite case; p* is the angle 
of rotation corresponding to nR. Hence 

M u  = [ l /nkx)l  2x,A4%F(h)* (8.12) 
d 

where xF is the character of the pth IR of Gk. 
Asanillustration. weconsiderthecalculationofthenumbers (8.12)andsymmetrized 

functions (8.5) and (8.6) for the case of an ss with an HCP structure. Some results of the 
calculations are collected in tables 4 and 5. Table 4 furnishes. for the points k belonging 
to the z axis, the indices of the IR whose basis may be constructed from the functions 
with I = 2 (i.e. nc,, # 0). In table 5 the bases constructed of the functions with / = 2 and 
m = 0 are represented. 

As was mentioned in section 7 ,  for an HCP structure K ,  = 0 for all symmetry opera- 
tions. Hence foroperationsoftype1 theangle(8.9)isequal tozero,and thecontribution 
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TableS. Basic functionsot the LR. 

SSG Of  ss 

of these operations to expressions (8.12) and (8.6) is independent of u. Moreover, owing 
to the aforementioned coincidence of the matrices of this type of element with the 
matrices of the corresponding representations for the SG D&. we shall obtain the same 
contributions to the sums (8.6) and (8.12) as those in the traditional consideration of an 
HCP structure. Therefore, when the wavevector group contains only operations of type 
I, the numbers of symmetrized basis sets (8.12) and the coefficients of the symmetrized 
functions (8.6) are u-independent and coincide with the corresponding values for SG 
D t .  (See point A in tables 4 and 5.) 

For operations of type 11 pel = K and 
exp(-iipe,o) = -io (8.13) 

that is the quantities (8.6) and (8.12) become u-dependent. Further consideration 
depends on the type of representation. 

For therepresentationsof the type (7.4), the matricescorresponding to theelements 
of type I1 differ from the counterparts for the SG Dih in multiplier i. Accounting for 
(8.13), the parameters (8.12) and coefficients (8.6) for the representation Dpi and spin 
index u will coincide with the corresponding values for the IR D;,-;) of sc Dth. That is 
for U = -1 we shall have the same values as in the case of the SG D& (see point r in 
tables 4 and 5). Another implication is that the number and form of symmetrized 
functions for the representation Dps and spin index U coincide with the corresponding 
characteristics for the IR DP(-<) and spin index - U .  

For IR of the type (7.8), the characters of the matrices corresponding to type I1 
operations are equal to zero. Therefore, the U dependence of the parameters (8.12) is 
absent. If we use in (8.4) the first column of IR matrices (i.e. y = l),  then the coefficients 
(8.6) for the functions corresponding to the upper half of rows will be independent of U 
and coincide with the corresponding valuesfor the SG D$ because only type I operations 
make a contribution to these functions. The rest of the functions are defined by the 
operations of type I1 and are of opposite signs for different values of U.  These functions 
differ from the corresponding functions for SG Djh in factor i. (See point A in tables 4 
and 5.) 

9. Time inversion operator 

Some additional properties of the spectrum may be obtained by taking into consideration 
the time inversion operation 0 [SI. To act on a two-component spinor, this operation 
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may be taken in the form 

where K is the operator of complex conjugation. 
For any magnetic crystal, that is in the case of V+ # V- in (2.3), the operator (9.1) 

can enter the symmetry group only in combination with unitary operations. From the 
condition for the Hamiltonian (2.2) and the anti-unitary operators g, = O{as I uR It} to 
commute. it follows [17] that, just as in the case of unitary operators, the symmetry 
group includes operators that transform the magnetic structure (2.1) into itself. (When 
actingon the magneticstructure, the operation (9.1) reverses thedirectionsof magnetic 
moments.) 

Below we give, without proof. some important statements connected with taking 
into account the time inversion operator: 

(i) The restriction (4.6) and (4.7) imposed on the unitary parts of the operators g, 
are the same as those for the unitary operators. But in this case transformations of type 
1 enter into the symmetry group only for the ss. 

( i i )  If Y k  is a generalized Bloch function corresponding to the vector k, then g,Yk is 
also a generalized Bloch function, but one corresponding to the wavevector - a H k  + 
&. Hence we obtain the following additional property of spectral symmetry: 

&(-a& + Mw) = E @ ) .  (9.2) 
(iii) The operation (9.1) may lead to an additional degeneracy at a given point k. 

Information about this degeneracy can be obtained using the following generalization 
of the well known Herring criterion [D]: 

case ( a )  

where xk is the character of the wavevector group I R  being considered. The summation 
in (9.3) is carried out over anti-unitary symmetry operations that fulfil the condition 
specified under the summation sign. In cases ( b )  and (c ) ,  an additional degeneracy of 
levels takes place, which is due to the presence of anti-unitary elements. In case ( a )  such 
degeneracy is absent. 

The main difference of formulae (9.2) and (9.3) from analogous formulae for space 
and magnetic groups [Z. 231 is in  the presence of a vector K, in these formulae. The 
length of this paper does not allow us to carry out more detailed discussions of questions 
connected with operation 8. 

Note that for the ss in HCP crystals, in complete analogy with traditional results for 
IKP structures [20], all representations for points of the interval AL and for internal 
points of the triangle ALH belong to the case ( b )  . Therefore, all states of the ALH plane 
turn out to be at least doubly degenerate. Thus, for an ss one can use the double BZ, 
which is often convenient in the traditional consideration of iicpctystals (241. 
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