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Abstract. This paper is devoted to the systematic study of questions concerning the use of
spin-space groups (ss6) in calculation and qualitative analysis of the electronir: states for
crystals with spiral magnetic order. The types of operators that may enter into the symmetry
group of a spiral are investigated. Introduction of the wavevector of an electronic state on
the basis of the generalized Bloch theorem is discussed, and it is shown that the possibility
of the choice of the wavevector is not unigue. The condition imposed on the symmetry
operations belonging to the group of a given Bloch vector and the formula describing the
symmetry of eigenvalues in reciprocal space are obtained and appear to be substantially
different from counterparts used in traditional cases of collinear and non-magnetic crystals.
It is shown that, contrary to the traditional cases, there are spiral structures whose spectral
symmetry is described by non-symmorphic space groups. The irreducible domain of recipro-
cal space is found for a2 number of concrete spiral structures. Methods of construction of the
ssGdouble-valued irreducible representations and also of their basis functions are suggested.
Special attention is devoted to the possibility of using the corresponding tables of ordinary
space groups. In particular, it is shown that for spirals with hexagonal close-packed crystal
structure the traditional tables may be used after minor corrections. The peculiarities of
allowance for the operation of time inversion are discussed.

1. Introduction

The success of electron band theory in describing the ground-state properties of collinear
magnets is well known. In recent years, methods have been suggested [1-7] that permit
calculation of electron states for non-collinear magnetic configurations. Special interest
attaches to calculations of the electron spectrum of spiral magnetic configurations. This
is because, first, this arrangement of magnetic moments is observed experimentaily for
a lot of substances (see e.g. [8]) and, secondly, calculating the electron structure for
these simplest non-collinear magnetic configurations allows one to draw important
qualitative conclusions concerning the electronic properties of collinear magnets at finite
temperatures [1, 9-11].

In [3], it has been shown that allowance for the generalized symmetry of the problem
on the basis of the theory of spin-space groups enables one to simplify fundamentally the
calculation of the electron spectrum of spiral magnetic configurations. The generalized
symmetry permits each electronic state to be specified by a definite wavevector k that
belongs to the Brillouin zone (Bz) of the chemical lattice. The main feature distinguishing
spin-space groups (55G) from ordinary space groups (3G} is the possibility of independent
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transformations of spin and space sublattices. (According to terminology adopted by
specialists in the theory of space groups, the $5G are a particular case of so-called ‘colour’
groups.) These transformations were introduced for the first time by Herring [12, 13].
A systematic study of the ssG has been made by Naish [14], in connection with the
problem of describing the symmetry of magnetic structures, and by Brinkman and Elliott
[15], who used $sG primarily to describe the Heisenberg spin Hamiltonian [16]. The
present paper is devoted to a systematic investigation of questions connected with the
use of $5G in the calculation and symmetry analysis of the electronic structure of spiral
magnetic configurations.

The next secticn discusses the Hamiltonian of the problem and the principles of the
construction of the ssG describing the symmetry of the Hamiltonian. In section 3, the
generalized Bloch theorem is considered; it is shown that there is more than one way to
choose the wavevector characterizing a given electron state. In section 4, classes of
operators that may enter into the symmetry groups of spirals are investigated. In section
5,the condition imposed on the ssG operators involved in the group of a given wavevector
is derived. The symmetry of the spectrum in reciprocal space is studied. It is shown that
both the condition imposed on the operators belonging to the group of the wavevector
and the formula describing the symmetry of the spectrum differ greatly from the cor-
responding traditional results for collinear magnets, which may be described on the basis
of sG. It is pointed out that, contrary to the traditional problems, the spectral symmetry
for some spiral structures is described by a non-symmorphic space group. Section 6 is
closely connected with section 5 and includes a discussion of the irreducible domains of
reciprocal space where the spectrum is to be calculated. Sections 7 and 8 are devoted to
the construction of irreducible representations (IR) and symmetrized functions. Special
attention is paid to the possibility of using the corresponding tables for point groups. In
section 9, peculiarities in taking into account the time inversion opération are discussed
for the case of spiral structures.

2. One-electron Hamiltonian and its symmetry

In the present paper, we shall restrict ourselves to a consideration of spiral structures of
the form

e;,, = sin 8 explig - (a; +t,)] (2.1a)
€j,; = COs 6 (2.1b)

where the vectors e define the directions of atomic magnetic moments, the ¢, are the
lattice translations, the g; are the radius vectors of unit-cell atoms, and ¢ is the vector of
the spiral. We shall suppose that a; = 0. Formulae (2.1) give the projections of vector e
on the xy plane and the z axis; @ is the angle between the magnetic moments and the z
axis. In (2.1a) the representation of the vector in the form of a complex number is used.

The one-electron Hamiitonian of a non-collinear structure (2.1) may be written as

[3]
H==A+2UpV(r=t, - ;)(Us)" (2.2)
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where

V() 0 )
0 V_(7)

is a potential in the local atomic systems of coordinates, the z axes of which are paraliel
to the directions of atomic moments. The spin rotation matrices

- (cos{%ﬁ) exp[—i(e + v)/2] —sin(3B) exp[—i(e — y)/z]) 04
sin(3B) expli(e — v)/2] cos(3B) expli(a + v)/2] '

determine the transition between the laboratory coordinate system and the atomic
systems; @, B, y are Euler angles; A is the kinetic energy operator.

In [15}], it has been shown that the traditional machinery of space groups does not
give a complete description of the symmetry of Hamiltonian (2.2), so the use of $5G is
needed. The action of a $5G operator on a two-component spinor may be defined by

{aslap |W(r) = Ulas)¥({ag|8™'r) = Ulas)¥(ar'r — az')  (2.5)

V(r)y = (

where o is the spin rotation, {evy|#} is a space transformation that contains a rotation &y
and a translation ¢. From the commutation relations of the operators (2.5) and the
Hamiltonian (2.2}, it follows [17] that the symmetry group of the problem includes
operators that leave the magnetic structure (2.1) invariant. The action of SSG operator
on the vector function (2.1), determined at the crystal lattice sites, is defined by

e;‘n = {a'S | @R |t}e;'n = Qglpy (26)
where the indices j°, n’ may be found from the equality
far|d ™ (a; +1,) = a; +t,. ' (2.7)

At the same time there is an important difference between the group of operators
(2.5) commuting with the Hamiltonian (2.2) and the group of transformations (2.6)
leaving the magnetic structure (2.1) invariant: two operators (2.5) of opposite sign
correspond to each transformation (2.6). This sign uncertainty is typical of operators
acting on spinors and is a consequence of the homomorphism of the group of rotations
asand the group of matrices U(a;) {18]. (Using the same notation for the transformations
defined by (2.5) and (2.6) should not lead to difficulties. In this paper, we use mainly the
operators (2.5).)

The multiplication law for the operators (2.5) reads

{as|ag | Haslaglt' = clasal|apar|apt’ + 8 (2.8)

where ¢, is +1or — 1, according to the signs that we choose for matrices U in the definition
(2.5) of the operators involved in (2.8). In the general case, this uncertainty cannot be
removed by any choice of the signs of operators. The group multiplication law may be
fulfilied only for double groups [19] containing two operators with opposite signs for
each transformation {2.6).

The wavefunctions corresponding to an energy level form the basis of some Ir of the
Hamiltonian symmetry group [18]. In the case of spinor wavefunctions, this statement
holds good for the IR of double groups or, in other terminology, for the double-valued
representations of the group of the transformations (2.6).

Thus in constructing the symmetry group of the Hamiltonian (2.2), it is sufficient to
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find the symmetry group for the vector function (2.1) on the basis of transformations
{2.6). But to describe the electronic structure, we need to take into account the sign

uncertainty of the operators (2.5).

Note that the potentials V,(r) in (2.3) may be defined in both the atomic sphere and
the whole space. Therefore the consideration is not restricted to the muffin-tin potential
only. We believe that the important conclusion drawn in the previous paragraph and,
as a consequence, all further considerations should be valid within any consistent theory
of electron states of non-collinear magnets neglecting spin—orbit interaction (see also
(16]) and do not depend on the representation of one-electron potential.

3. Generalized Bloch theorem

As in traditional cases whose symmetry may be described by ordinary sG, the most
important role is played by the translational symmetry of the problem, because this
symmetry permits a wavevector of a state to be introduced |3, 13, 15].

Let us consider $5G elements of the form

T, ={ar(‘?'tn)|€|tn} (31)

where £ is the unit element of the group of rotations, and a(g) is a rotation by an angle
¢ about the z axis. We call these elements ‘generalized translations’. For the group of
generalized translations, T, the use of the double-valued representations may be avoided
if, in the definition (2.5) of operators (3.1), we use matrices (2.4) corresponding to angles
a=p=0,y=g-t, For these matrices we introduce the notation U(g - £,). For this
choice of the signs of the matrices we can write :

Ulg-t)U(g-t,) = Ulg- (1, +t,)) (3.2)

and the set of generalized translations forms an Abelian group that is isomorphic to the
group of space translations ¢,. Therefore the IR of these groups are identical and we can
write the IR of T'in the form

Di(T,) = exp(—ik - £,). (3.3)
Thus we arrive at the generalized Bloch theorem
T,W(r) = exp(—ik- 1, )¥(r) (3.4)

where W is the eigenfunction of the Hamiltonian (2.2).

Hence in labelling the states, it is sufficient to use wavevectors from the Bz that
correspondsto the lattice of vectorst,. The electron spectrum (k) may also be considered
as defined at all points of reciprocal space and as having the periodicity of the reciprocal
lattice.

Note that, although we may avoid the use of double-valued representations of the
generalized translation group, the sign uncertainty in the definition of operators (2.5)
leads to the following important property: the possibility to connect the electronic state
with the vector & of the Bz on the basis of the generalized Bloch theorem (3.4) is not
unique.

Indeed, let us show that there are other possibilities to choose the signs of the
operators T,, which also lead to the isomorphism of the group T and the group of space
translations ¢,.
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Rewrite formula (3.3) in the form
3
D(T,) = 2 [exp(—ik - f;)]* (3.5)
i=1
where we have used the equality
3
t,= 2 n.f; (3.6)
i=1

and the f; are the unit translations. The sign uncertainty in the formula (2.5) allows one
to change the definitions of the generalized translations corresponding to the vectors f;
in such a way that the value of the representation corresponding to the translation ¢,
takes the form

2 [ci exp(—ik - £)] G.7)

1

where ¢; may be equal to +1 or —1 depending on the choice of sign in the definition of
unit translations. Expression (3.7) may be rewritten in the form exp(—ik' - £}); that is
we obtain, as before, the traditional form of representation (3.3) but for a different
vector

k' =k+ 2 vb, (3.8)

where the b, are the unit translations of the reciprocal lattice, »;isequalto Oif¢; = 1 and
to 1/2if ¢; = — 1. Therefore depending on choice of signs in the definition of operators
T,. the same electronic state will satisfy the Bioch condition (3.4) for different values of
wavevector, which differ by half the reciprocal-lattice vector.

The change of sign of the operators that leads to equality (3.8) may be defined, in
calculating the spin rotation angle in (3.1), by the replacement of spiral vector ¢ by

g =q+22vb,. 3.9

In this case, the spin rotation accompanying lattice translation changes by a value that
ismultiple of 2. The transiation thus obtainedis again a symmetry operation that leaves
the magnetic structure (2.1) unchanged but leads to some operators T, changing sign
due to the properties of the matrix L.

In the following consideration it is supposed that the choice of the spiral vector g has
been made and, therefore, the wavevector of each state is uniquely fixed.

4. Properties of the symmetry operations of spiral structures

The symmetry of the Hamiltonian (2.2) relative to the elements of the group of gen-
eralized translations has allowed us to characterize each electron state by a wavevector.
For the investigation of the properties of the electron spectrum, which foliow from the
presence of other symmetry operations, it is useful to find classes of operators that may
enter the symmetry group of spiral structures.

In this section we restrict our attention to strictly non-collinear structures (although
a ferromagnet and an antiferromagnet may be considered as the limiting case of a
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spiral). Then, in the ssG of a spiral, the only spin rotation &g corresponds to each
space transformation {a|#} because in the opposite case the group has to contain a
transformation that is a purely spin rotation.

Let g = {ovg g |4} be a transformation from the ssG of the spiral. For the space part
of this transformation, the following relation is true:

{ag|g~Helt,Hag |t = {e|ar't}. (4.1)
Then, for the operations (2.6) we can write
g™ T(t,)g = T(ar'ty) (4.2)

where the space translations corresponding to the generalized translations are shown in
brackets. For the spin parts of the operations we shall obtain

agla'(tn)as = a’(ai_?ltn)' (43)

Supposing that the spin rotation a; is defined by the angles «, 8, ¥ and using formula
(2.4), we can write

(d* cos*(38) + dsin?(3) isinBe(d - d*) ) _ ( * 0)
fsinfeMd—dY)  d*sini(P)+doosiGR) N0 f

which follows from (4.3). In (4.4) d = exp(}ig - t,,), f = exp[ig * (ag'¢,)], the constant
¢, arises from the homomorphism of the rotation group and the group of the matrices U
andis equalto +1or —1.

If the vector ¢ coincides with a vector of the Jattice reciprocal to the lattice of vectors
t,, that is,

(4.4)

g-t, =2k kis aninteger (4.5)

then equality (4.4} is true for any as.
For other g the condition {4.4) is fulfilled if

p=0 (4.6a)

arqg=g+K, (4.6b)
or

B=rm (4.74)

arqg=—q+K, (4.7b)

where K, is a reciprocal-lattice vector. In the case (4.6), the spin rotation is carried out
about the z axis; in the case (4.7), the rotation is carried out by an angle ;7 about an axis
perpendicular to the z axis. We shall call the operations fulfilling the conditions (4.6)
and (4.7) operations of type I and II, respectively.

As the operations of type I change the sign of the projection of the magnetic
moments on the z axis, they can enter into the symmeiry group only for spiral structures
(2.1) with @ = /2, when all spins are parallel to the z = 0 plane.

Tosolve the question whether conditions (4.6) and (4.7) suffice for the corresponding
transformations to be involved in the $sG of the spiral, we transform the crystal by the
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symmetry operations of the space subsystem {a, |#} without changing the directions of
atomic spins. Then, instead of e;,, in (2.1), we shall obtain

e),, =sin @ expliagq- (a; +1,) —ig- (a'H] (4.8)
For operations of type I, using (4.6b), we can write
ej,, =sin 0 explig- (a; +1,) +iK, - a;, — ig - (az'?)]. (4.9)

The function (4.9) will coincide with (2.1a) as a result of a spin rotation about the z axis
if and only if the expression —K, - a; + ¢+ (az'f) gives a j-independent value of the
angle of rotation. As @, = 0, we can write this condition in the form

K,-a; =2nrk k is an integer (4.10)

for any j. Therefore, K, has to fulfil the condition imposed on the reciprocal-lattice
vectors not only for lattice translations #,, but also for atomic basis a;.
For operations of type II, using (4.7b) yields

e;;zﬂ. = sin @exp[—ig- (a, +¢,) + K, a, —ig- (er't)] (4.11)

instead of (4.9).

Taking into account that a rotation by an angle r about any axis perpendicular to the
z axis may be considered as a rotation by an angle & about the x axis followed by a
rotation through an angie about the z axis, and allowing for the fact that a rotation by
an angle 7 about the x axis corresponds to a complex conjugation of the function (4.11),
we again obtain the equality (4.10) as a necessary and sufficient condition for the
operations of type II to enter the symmetry group of the spiral.

Note that for lattices with one atom per unit cell and also for ¢ and ay for which
K, = 0, the condition (4.10) is always fulfilled.

5. Groups of the wavevectors and the symmetry of the spectronm in reciprocal space

With respect to the electron state W, corresponding to a given £, all symmetry operators
g may be separated into two sets. The first set contains operators that transform the
function W, to a function g\¥, corresponding to the same vector k. These operators form
the wavevector group, G;, whose irreducible representations determine the character
of the degeneracy of states at the point k. The second set contains operators for which
the function g\, fulfils the condition (3.4) for a vector & that is not equal to k. This part
of the operators determines the symmetry of the spectrum in reciprocal space. We shall
show that both the condition imposed on the operators belonging to the wavevector
group and the formula describing the symmetry of the spectrum differ substantially from
the corresponding traditional results for collinear magnets, the symmetry of which may
be described on the basis of ordinary space groups.
Let the generalized translation T(¢,) act on the function gW;:

T,(gWi) = glas'alg - t)as| e g .} W (5.1)

For operations of type I, rotations g are performed about the z axis. Therefore these
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operations commute with «(g - ¢,), and we can rewrite the operator on the right-hand
side of (5.1):

{alg-t,)|elar't,} ={alg - t, — ¢ (@r't,))|e|}T(aR'L,). (3.2)
As

qg-t,—g-(ag't,)=—K,-¢, (5.3)
this value of the angle of spin rotation is a multiple of 27 and the corresponding matrix

U(-K, -t,) is a scalar and equal to +1 or —1. Allowing for (5.2), (5.3) and (3.4), we
have from (5.1)

Ta(gW) = exp[—~i(ark — 1K, } - 1,)(g% ). (5.4)
Thus the function g¥, corresponds to the wavevector agk — 3K ,. If
apk—3K,=k+ K, (5.5}

where K, is a reciprocal-lattice vector, then the type I operation g is invoived in the
group of the wavevector k. In the opposite case we obtain the symmetry property of the
spectrum

e(k) = g(agk — 3K ). (5.6)

For operations of type I the product of three spin rotations may be written in the
form

a'gl CY(q‘ t)as = a{—q-t,) = (K, - tn)a(q ) (':Y.Tiltn)) (3.7

where formula (4.76) was used. Further, in complete analogy with the consideration for
operators of type 1, we obtain the result that formulae (5.4)—(5.6) are true in the case of
operators of type II, too.

So we see that formulae (5.5) and (5.6) differ from the corresponding formulae in
the traditional case:

C\:’szk”'i‘Ku (5-8)
elapk) = e(k) (5.9)

and coincide with them only for K, = 0.
To understand more deeply the sense of the relation (5.6), we replace the variable

k=K +1q (5.10)
and introduce the notation £'(k") = (k' + 4q). Formula (5.6) takes the form
e'(k') = &'(agk’) (5.11)

that is we have obtained the traditional formula (5.9). Hence the type I operations
determine the symmetry of the spectrum relative to a point transformation with the
centre at the point 3¢. For operations of type I the use of (5.10) allows us to represent
(5.6) in the form

e({((Iag)k' + 1)) = (k' + bq) (5.12)

where [ is the operation of inversion. Therefore, an operation of type II leads to the
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coincidence of the spectrum at a point k with the spectrum at the point obtained from &
by a transformation /oy, relative to the point 3¢ and by a subsequent inversion relative
to the coordinate origin.

If the group contains operations that are a superposition of point transformations
with different centres, an unusual result can arise: the symmetry of the spectrum in
reciprocal space will be described by a non-symmorphic space group, a situation that is
impossible in the traditional case (5.9). (A corresponding example will be considered
below.)

The spiral structure spectrum symmetry can be visualized better if we rewrite equal-
ities (5.6), (4.6) and (4.7) in the form

e(k) = e(far| —4K, + K, 1K) (5.13)
{ar| —iK B =1q (5.14)
{ar| -3 Hg = —ig. (5.15)

From this it follows that the symmetry group of the spiral spectrum includes only
operations that leave unchanged the crystal lattice made up of the vectors K, and having
two atoms (at the points 3¢ and —3q) per unit cell. Moreover, operations of the first type
(5.14) leave the atoms of the basis unchanged, and operations of the second type (5.15)
transfer one atom of the basis into the other atom.

Finally, in the case (4.5) where the spiral vector is equal to a reciprocal-lattice vector,
a consideration analogous to the foregoing treatment shows again that formula (5.6) is
true for any symmetry operation.

6. Irreducible domain of reciprocal space

One of the main tasks of the investigation of spectral symmeiry is to determine a
minimum domain of reciprocal space such that knowledge of the spectrum in this domain
allows one to find the spectrum at any point of space. The volume of the irreducible
domain (ID) is equal to the (1/7)th part of the Bz volume, where # is the number of
different point transformations ay entering into the symmetry operations.

Let us consider the 1D for a number of concrete spiral structures.

6.1. BcClattice, g = (0,0, o), 0 < a < 2x/a

For magnetic structures (2.1) with o # 2x/a and 8 # x/2 the symmetry group contains
eight of 48 operations of the crystal class of cubic lattices [20]. These are operations that
satisfy the condition

wrq=q (6.1)

and are rotations about the z axis and reflections in the planes going through the z axis.
For the same a and 8 = 7/2 the volume of the 1D decreases by the factor of 2 because of
the type I operations, for which

¥rg = —q. (6.2)

These operations may be obtained from the previous eight operations by multiplying by
the inversion. For all of the 16 operations the vector K, in formulae (4.6) and (4.7) is
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Figure 1. Irreducible domains in reciprocal space
for spiral structures with BCC lattice. (a) The tra-
ditional 1D of BCC lattice (thin line) and the 10 for

Figure 2. {a) Magnetic structure with g =
(7.7.7)/a and @ = 90°, (b) The crystal structure
whose symmetry is described by the same sym-

spiral structure with g = (0.9, 27/a) and @ % 90°
(heavy line). (b) The 1D for spiral structure with
g=(r,am)/a and 6 =90° (heavy line). The
tetrahedron of doubled volume is the 1D for spiral
structure with g = (7.7.7)/a and 8 # 90°. The
coordinate scales are given in 2:77/a units.

metry group as the symmetry of the spectrum of
the magnetic crystal shown in (a).

zero and the symmetry of the spectrum has the traditional form (5.9). Therefore,
the construction of the ID has no peculiarities connected with the non-collinearity of
magnetic structure. It suffices to separate the (1/n)th part of the traditional Bz of the
lattice being considered, by allowing for the point transformations oy,

In the case a = 2:x/a and 0 # x/2 the symmetry group of the spiral contains all the
48 operations @y of the cubic lattice crystal class as the condition (4.6b) is fulfilled for
any «g. In this case all operations belong to type 1, and formula (5.11) works well for
any operation. Hence the spectrum is invariant under 48 point transformations with the
centre at point g/2. Therefore, the (D may be taken in the form of the polyhedron shown
in figure 1{(a) and obtained from the traditional 1D of the BCC structure via displacement
by the vector /2.

Finally, for & = 2x/a and 8 = 7/2 we obtain a collinear antiferromagnetic structure,
which has been well studied by the traditional methods.
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6.2. Bcc lattice, g = (=, 7, @) /a

For 8 +# /2 the group contains 24 operations, for which the equality (4.6b) is true. The
corresponding ID (figure 1(b)) is shifted by ¢ relative to the 1D obtained for the same set
of ag in the traditional case. For 6 = /2 the volume of the I is equal to 1/48th the Bz
volume (figure 1(b)), although the location and orientation of the ip differ from the
traditional case (figure 1(a)).

The magnetic structure with 8 = /2 (ﬁgure Z(a)) is of special interest because at
this parameter the symmetry of the spectrum is described by a non-symmorphic space
group. Figure 2() shows a crystal structure whose symmetry is described by the same
space group as the spectrum of the spiral. As was noted in the previous section, that is
a crystal with an FcC lattice and two atoms per unit cell at the points 3¢ and —ig.
In particular, the symmetry group of the structure shown in figure 2(d) contains a
transformation that consists of areflectioninthe z = Oplane and asubsequent translation
by the vector (i, 7x, 0)/a parallel to that plane. This indicates the presence of a slip plane
in the symmetry group of the spectrum.

6.3. HCPstructure, ¢ = (0,0, o), 0 < o < 2m/c

For o # 2x/c and @ % 7/2 the spiral structure symmetry group contains, of the 24
operations of the HCP structure crystal class [20], 12 operations that fulfil condition (6.1).
For 8 = /2 the volume of the 1D becomes equal to 1/24th the BZ volume, owing to the
operations satisfying (6.2). In the latter case the ID coincides with that used in traditional
calculations for HCP crystals [20].

For & = 2x/c and 8 # 7/2 equalities (4.6b) and (4.10) are fulfilled for all the 24
operations &y and we obtain again the traditional polyhedron of the HCP crystal.

7. Irreducible representations of the wavevector group

A principal role in the consideration of the symmetry of quantum-mechanical problems
is played by the irreducible representations (IR) of the symmetry group of the Hamil-
tonian. In the investigation of crystals, the task reduces to finding permissible Ir of the
wavevector groups [21] for various points of reciprocal space.

Comparing the multiplication law for the ssG operators (2.8) with the corresponding
formula for the space parts of the operators

{ag|tHor |t} = {apak|agt + 4 (7.1)

and taking into consideration the one-to-one correspondence of the spin and space parts
of the 556 operators for non-coilinear structures, we may conclude that double-valued
IR of the ordinary space group of the operators {ay| £}, but with sign distribution defined
by spin rotations, are needed in this case. On constructing the multiplication table, the
IR can be found by the traditional group-theory methods; that is, in principle, the
problem has been solved.

In this section we shall formulate a simple statement that allows us to base the
construction of the SSG IR on the existing tables of IR of ordinary space groups. As an
example we shall consider the application of the method to a crystal with HCP structure
(sG of the DY, type).
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Table 1, Elements of the crystal class*,

&g

No. Angle(deg) Axis T, @& Type No. 7, a3 "'}‘"ype
10 0.0.1 0 ¢ 1 3 ¢ C, I
2 0.0.1 14

; 60 001 r G 1 s 0 O I
4 0,0,1 16

, 120 0.0.-1 0 & I 7 7 Ce ll
6 180 0,0,} T Cp 1 18 0 Gy, H
7 1,0.0 19

8 180 V3RO T G, T 20 0 ¢ 1
g -4V3/2,0 21

10 V3f2.40 2

I 180 0,1,0 0 G, 1 23 7« C 1
12 -V3/2.4.0 24

* Transformations ay with numbers from 13 to 24 differ from the corresponding operations
with numbers from 1 to 12 in the addition of inversion. The following notations are used:
T =a; C,isthe rotation by an angle ¢ = ¢ - Tabout the z axis; Cy, is the rotation by an angle
7 about ¢; Cp, = C.Cy,. The symmetry group of the Fs contains the operations of type I
only.

It may be shown that for the subgroup containing symmetry transformations
{as]agle} belonging to type 1 and fulfilling condition (6.1) the signs of the operators
acting on the spinors may be chosen such that the isomorphism of this subgroup and of
the corresponding subgroup of pure space transformations {oz £} takes place. The proof
of this statement is based on the property following from the results of section 4 that for
operators {&s| ag|#}, which satisfy (6.1), spin rotations are carried out by an angle g - ¢
about the z axis. The isomorphism will be established if we fix the sign of the matrix (2.4)
in definition (2.5) by using the angles y = ¢ - £, § = a = 0. This isomorphism allows one
to use the IR of the ordinary sG of the operators {ag | #} as the iR of the $5G of the operators
{alg- ) ar|t.

Let us consider the construction of the IR of the $5G of a spiral with an HCP structure.
In accord with experiment [8], we take a vector ¢ parallel to the z axis. We shall restrict
our consideration to vectors g that are not equal to a reciprocal-lattice vector. We shall
use the form of the unit cell of the HCP structure defined by unit translations

fi =a(1/2,V3/2, 0) fr=a(-1/2, \/5/2:0) f3=¢(0,0,1)
and by atomic basis
a, = (0,0,0) a, = (0, V3a/3,c/2)

where a and ¢ are the lattice parameters of the HCP structure. In table 1 the elements of
the crystal class of the ssG are given for a ferromagnetic spiral (Fs) with 8 in (2.1)
not equal to /2, and for a simple spiral (ss) with 8 = 7/2. These structures were
experimentally observed for Tb, Dy, Ho and Er [8]. The symmetry elements entering
into the group of the wavevector for various BZ points are given in table 2.
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Table 2. Symmetry of the reciprocal space points®.

k Symmetry elements
Symbol k. k, k, Typel Type 11
A 0 0 g 1-6,19-24 -
r 0 0 0 1-6, 19-24 7-13
A 0 0 1 1-6,19-24 7-18
U 0 V3/3 b 1,6,19,23 -
M o V33 G 1,6,19,23 7,11,13,18
L 0 v3/3 1 1,6,19,23 7,11, 13, 18
P 13 VIS ® 1,4,522-24 -
K /3 V3 0 1,4,522-24 7-9,14,15,18
H /3 V33 1 1,4,5,22-24  7-9,14,15,18
p wfs V33 0 1 18
B w3 V3i» 1 1 18
y v/3 V33 1,24 -
T vf3 V33 0 1,24 g, 18
S v/3 V3 1 1,24 8,18
& 0 Vi3y 1,19 -
= 0 V3f3y 0 1,19 11,18
R 0 V3fse 1 1,19 11, 18
E /3 V33 i 1,23 -
T »/3 V33 0 1,23 7.18
s »/3 V33 I 1,23 7,18

* The symmetry group of the Fs contains the operations of type L only. Coordinates &,, k, are
given in 2x/a units, &, in 2/c vnits, 0 < », @ <1, ~1 <g =<1 in the case of the rs and
0 < g < 1inthe case of ss.

In the case of an Fs all points of any straight line parallel to the z axis have the same
symmetry. That is why the isolated points of high symmetry are absent for the Fs. In the
ID there are only three vertical directions A, P, U and three vertical planes y, 8, & the
groups of which contain non-unit elements of the crystal class. As the symmetry group
of the rs contains only type I cperations that satisfy (6.1}, the 1R of all the wavevector
groups may be found from the isomorphism with the corresponding space group. More-
over, for all the six symmetry objects the wavevector groups contain the same elements
ap as those in the traditional consideration of these points on the basis of sG D, [20}].
Therefore we can immediately use tables of IR of ordinary 3G for these symmetry
directions and planes. In table 3 the IR for the direction A are given.

In the case of ss for points of the planes z = 0 and 2 = x/c, the number of symmetry
elements is doubled owing to the operations of type II, which satisfy condition (6.2).
For the points £ of these planes the theory of the sG IR (see e.g. [21]) permits one to
find the IR of the $8G of the wavevector k for the s3, based on the corresponding
representations at this point for the Fs. For the points of these planes the wavevector
group in the case of an Fs, H, is a half-subgroup of the group of the same wavevector in
the case of an 85, . Then

G = Hg, + Hg, (7.2)

where g, is the unit element and the element numbered 18 in table 1 may be used as g,.
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H is an invariant subgroup [21] of G. We can write the following formula for the
characters x,(h) of representations d,(h) of H,h € H,

x,n(g2hg£1) =XP’(h)' . (73)

Further steps depend on whether p is equal to p’ or not.
Withp = p’, Gis the little group [21] of the representation d,, and its IR may be found
by the direct product

D, (hg.n) = (d,(M)U(gn)) % 8:(8m) (7.4)
where the unitary matrices U are defined by the formula
dp(gmhg;r[) = U(gm)dp(h)U(gm)“l {1.5)

and ; are the projection representations [21] of the factor group G/H defined by
formulae

0(8m)0(gm) = W H(EmB1) (7.6)
U(gmgm') = W U(grn)U(gm’)‘ (77)

In the case of p # p’, two representations (d, and d,) form an orbit and give one IR
of group G:

D(h —(d”(h) ) 7.8
D= 4 (7.80)
andforg € G,butg € H,
0 d(ggz“))
D(g) = g . 7.8b
4/ (dp(gzg) 0 (7.8b)

Thus the main question is whether p’ in (7.4) will be equal to p or not. In the case of
HCP structure we can write

Xp(82hgst) = exp[—it« (agk — K)]x, (h) (7.9)

where a4 is the space rotation of the 18th operation from table 1. For all points of the
z = 0 plane azk — k = 0 and, consequently, p' is always equal to p. For the points of
the z = z/c plane the equality p = p’ holds either for operations with 7, = 0 (see table
1) or for the case x,(#) = 0. Let us consider some details of the construction of the IR for
the z = 0 and z = xr/c planes.

The z = 0 plane, For all points of the plane
1 0
Ulg,) = U(g2) = 01 On=wp=0n=1 wp = —L

In this case the isomorphism with an ordinary space group cannot be established,



8580 L M Sandratskii

because g5 = —g, for any choice of sign of g,. Two projection representations of the
factor group have the form

Selg1)=1 o.(gz)=1Li where { = =1, (7.10)

These permit us to write the representations (7.4) at any point of the z = 0 plane. In
particular, to obtain the IR at the point T, it suffices to use the relation

Lo (hgm) = dp(1)0;(8m) (7.11)

where the d, are the 1R from table 3, which correspond to the point & = 0.

Note that for the space group DY, a quite analogous consideration may be carried
out to construct the IR at the points of the z = 0 plane. The only difference lies in the
replacement of the imaginary unity in (7.10) by unity. Thus all iR D, of the ssG of the
spiral for the points of the z = 0 plane may be obtained from the representations D, of
the ordinary space group by multiplying the matrices of symmetry elements numbered
7 through to 18 by an imaginary unity; that is

D, (k) = D3 (h) (7.124)
D, (hg,) = iDj:(hga). (7.12b)

Point A. All representations of the subgroup H belong to the case where equality (7.3)
isvalid forp # p’. The representations of the subgroup (table 3) are separated into three
ortbits: (p=1,p ' =2); (p=3,p" =4); (p =35, p’ =6). Using (7.8) we obtain three
irreducible representations of the wavevector group at the point A.

The length of the present paper does not allow us to consider all points of reciprocal
space in detail and to furnish tables of IR. A complete consideration of the problem
enables us to draw the following conclusions about the connection between the $SG IR in
the case of the ss and the group D3, 1R. (i) For all points of reciprocal space, the number
and dimensions of the IR of the ss coincide with the counterparts for space group D§,.
(ii) For points that do not belong to the z =0 and z = mt/c planes, the IR coincide
completely. (iii) At the points of the z = 0 and z = 7/c planes $5G IR of the type (7.4)
(for the z = O plane all iR belong to this type) differ from the corresponding group Dé,
IR by multiplier i for matrices of type I elements. (iv) For 1R of type (7.8), this difference
resides in the change of sign of the lower left-hand block of the matrices of type I1
clements. (v) For the sG D{, the ir of the wavevector lying in the z = 7/c plane belongs
to the type (7.4) if its restriction on the subgroup of elements fulfilling condition (6.1} is
irreducible. In the opposite case this IR belongs to the type (7.8). This information allows
one to construct easily the IR for a 55 on the basis of tables of sG D, IR.

8. The construction of symmetrized functions

Complete allowance for the symmetry of the problem in band-structure calculations is
based on representing the electron wavefunction as a linear combination of functions
forming the basis of the IR of the Hamiltonian symmetry group. Detailed symmetry
analysis of electronic states may be useful, for instance, in the description of spectral
properties connected with the electron transitions between different states because
the symmetry of states influences substantiaily the probability of transition. Another
application of this analysis is the prediction of the character of the change in electron
bands as a response to the change of the one-electron potential symmetry. (As an
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example, see the following paper for a discussion of the influence of magnetic structure
change on optical properties of crystals.)
We shail restrict ourseives to the construction of symmetrized bases of the functions

-},{'rr’:no' =f(|r_aj_tnl)Yim(r_a,i_tn)x{?' (81)
These will allow one to carry out symmetry considerations for the Korringa—Kohn-
Rostoker (KKR) [3], tight-binding [3], augmented spherical-wave (Asw) [6] and linear
muffin-tin orbitals (LMTO) [7] methods. In (8.1), f is an arbitrary function, ¥, are
spherical harmonics and /7 is a spinor, which in the local coordinate systems takes the

form
(o "
X+ = 0 or X-= ]

x5 = UpnX o (8.2)

It is convenient to choose directions of the x and y axes of the local coordinate systems
such that the following equality holds:

an: = U(q - (trz + aj))UIO' (83)

Any element of the wavevector group G, can be represented as T,.& where & is an
operator {ag|ag|7,} for which the vector 7, lies inside the unit cell. To obtain the
symmetrized functions, we act on the functions (8.1) by a projection operator

By = [, /n(T)n(g,)] 2 explik - £,)D5,(6)*(T, &) (8.4)

that is

where the value of yis fixed; =1, 2, . . ., /; [, is the dimension of the representation
D,; n(T) and nig,) are the numbers of elements T,and & in G,.

On performing transformations we have

Yige = [1/n(T)] Eexp(lk » E afby o Vi (8.5)

alm;a [l/n(gk)] E 6!)« exp( ik tnf))D y(d')*Din'm(a’R) exp(_é(pwjo)' (86)

Here D'(ay) are the matrices of the representation of the space rotation group. Lattice
vectors ¢, are defined by equality

{ag|7ala; = a;, + 1. (8.7)

The important difference between (8.5}, (8.6) and the corresponding formulae for the
ordinary space groups is the presence of the factor exp(—4@,;0) in (8.6). The value of
@, is defined by equality

(eXp(-i%j/Z) 5.9)

exp(ie o/ 2)) '
(The product of four matrices on the left side of (8.8) always correspondstoaspin rotation
about the z axis.) The coefficients (8.6) enterinto the formulafor the symmetrized secular

matrix [3]. The action of the projection operator on the function (8.1) with # # 0 gives
symmetrized functions that differ from (8.5) and (8.6) only in an unimportant multiplier.

Uj:’ll U(—-¢q- taff)U(w.S‘)U;o =
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Table 4. Indices of the representation the basis of which may be constructed from the
functions with/ = 2%,

5sG of 55
Type of
point o=1 o=-1 Dty
r 2+, 57,6%,17,57,67 17,5%,6%,2°,57,67 I7,5%,6*,2°,5,6"
A 1,2,5(2}, 6(2) 1,2,5(2), 602y . 1,2,5(2), 6()
A 1,3(2) 1,3(2) 1,3(2)

2 In parentheses, the value of nf, is given if it differs from 1.

The analysis of formula (8.8) with the use of (4.6b), (4.75}, (8.7) and {4.10) shows
that

P = _Ka(aRa}) (89)
for operations of type I and
@o =K, aga)+a (8.10)

for operations of type I1.

Formula (8.5) shows that symmetrized functions may be constructed from *atomic-
like’ functions (8.1) with fixed fand o. It is useful to obtain a formula giving the number,
n#,, of different pth representation basis sets that may be constructed from functions
with given / and o. Acting by the group G, operators on functions

2 exp(ik-£,) Yo
n

with fixed { and o shows that these functions form the basis of a group G, representation
that is, generally speaking, reducible. The character of this representation has the form
sin{{ + §u,

Hio(Tn) = exp(=ik - ) (= 1)ir—mmmpiss

X Eexp(—iaq:,,,,/Z) exp(—ik - t,)8,, (8.11)
i

where n, = 0if ay is a proper rotation, and n, = 1 in the opposite case; u,, is the angle
of rotation corresponding to a,. Hence

nf, = [1/n(8:)] Z x1(@)x,(@)* (8.12)

where x,, is the character of the pth IR of G,.

Asanillustration, we consider the calculation of the numbers (8.12) and symmetrized
functions (8.5) and (8.6) for the case of an ss with an HCP structure. Some results of the
calculations are collected in tables 4 and 5. Table 4 furnishes, for the points & belonging
to the z axis, the indices of the iR whose basis may be constructed from the functions
with /= 2 (i.e. n8, # 0). In table 5 the bases constructed of the functions with/ = 2 and
m = () are represented.

As was mentioned in section 7, for an HCP structure K, = 0 for all symmetry opera-
tions. Hence for operations of type I the angle (8.9} isequal to zero, and the contribution
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Table 5. Basic functions of the Ir.

55G of 55

LY +v5 Foi¥ig - Y LYy + ¥ LPED ¢l £
ALY + exp(ik - a,) Y Ay YY — explik - a;,)Y% o= =1

ApYE +ivie o(i¥¥ + YZ) o= =1

D,

Fi¥h + Y5 PR £ €N

A:YY +exp(ik - a:) Yy Ay ¥y — explik- a;) Y3

A;:Yi(] + 1Y§0 Yiﬂ - IY?'&)

of these operations to expressions (8.12) and (8.6) is independent of 0. Moreover, owing
to the aforementioned coincidence of the matrices of this type of element with the
matrices of the corresponding representations for the sG D, , we shall obtain the same
contributions to the sums (8.6) and (8.12) as those in the traditional consideration of an
HCP structure. Therefore, when the wavevector group contains only operations of type
I, the numbers of symmetrized basis sets (8.12) and the coefficients of the symmetrized
functions (8.6) are o-independent and coincide with the corresponding values for sG
D¢y (See point A in tables 4 and 5.)
For operations of type Il ¢,; = & and

exp(—itg,0) = —io (8.13)
that is the quantities (8.6) and (8.12) become o-dependent. Further consideration
depends on the type of representation,

For the representations of the type (7.4), the matrices corresponding to the elements
of type II differ from the counterparts for the sG D¥, in multiplier i. Accounting for
(8.13), the parameters (8.12) and coefficients (8.6) for the representation D, and spin
index o will coincide with the corresponding values for the IR Dg;_¢, of sG Df,. That is
for o= —1 we shall have the same values as in the case of the sG D¥; (see point I in
tables 4 and 5). Another implication is that the number and form of symmetrized
functions for the representation D, and spin index o coincide with the corresponding
characteristics for the IR D, and spin index ~o.

For ir of the type (7.8), the characters of the matrices corresponding to type II
operations are equal to zero. Therefore, the o dependence of the parameters (8.12) is
absent. If we use in (8.4) the first column of IR matrices (i.e. y = 1), then the coefficients
(8.6) for the functions corresponding to the upper half of rows will be independent of o
and coincide with the corresponding values for the sG D§, because only type I operations
make a contribution to these functions. The rest of the functions are defined by the
operations of type II and are of opposite signs for different values of . These functions
differ from the corresponding functions for sG D¢, in factor i. (See point A in tables 4
and 5.)

9. Time inversion operator

Some additional properties of the spectrum may be obtained by taking into consideration
the time inversion operation & [18]. To act on a two-component spinor, this operation
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may be taken in the form

, 0 -1
=—;G'YK= ) O)K (91)

where K is the operator of complex conjugation.

For any magnetic crystal, that is in the case of V* # V- in (2.3), the operator (9.1)
can enter the symmetry group only in combination with unitary operations. From the
condition for the Hamiltonian (2.2) and the anti-unitary operators g, = 8{ag|ar|f} to
commute, it follows [17] that, just as in the case of unitary operators, the symmetry
group includes operators that transform the magnetic structure (2.1) into itself. (When
acting on the magnetic structure, the operation (9.1) reverses the directions of magnetic
moments.)

Below we give, without proof, some important statements connected with taking
into account the time inversion operator:

(i) The restriction (4.6) and (4.7) imposed on the unitary parts of the operators g,
are the same as those for the unitary operators. But in this case transformations of type
I enter into the symmetry group only for the ss.

(it) If W, is a generalized Bloch function corresponding to the vector k, then g, W, is
also a generalized Bloch function, but one corresponding to the wavevector —a zk +
iK,. Hence we obtain the following additional property of spectral symmetry:

e(—agzk + 3K,) = &(k). (9.2)

(iii) The operation (9.1) may lead to an additional degeneracy at a given point k.
Information about this degeneracy can be obtained using the following generalization
of the well known Herring criterion [22]:

1y case (a)
> l(Blaslag|r. D))= 0 case (b) (9.3)
apk=~k+iK,+K,
—Hy case {¢)

where ¥, is the character of the wavevector group IR being considered. The summation
in {9.3) is carried out over anti-unitary symmetry operations that fuifil the condition
specified under the summation sign, In cases {(») and (¢}, an additional degeneracy of
levels takes place, which is due to the presence of anti-unitary elements. In case (a) such
degeneracy is absent.

The main difference of formulae (9.2) and (9.3) from analogous formulae for space
and magnetic groups [22, 23] is in the presence of a vector K,, in these formulae. The
length of this paper does not allow us to carry out more detailed discussions of questions
connected with operation 8.

Note that for the s in HCP crystals, in complete analogy with traditional results for
HCP structures {20], ali representations for points of the interval AL and for internal
points of the triangle ALH belong to the case (b). Therefore, all states of the ALH plane
turn out to be at least doubly degenerate. Thus, for an $$ one can use the double BZ,
which is often convenient in the traditional consideration of HCP crystals [24].
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